
Modifying and Extending SPARTA

Steve Plimpton
Sandia National Labs
sjplimp@sandia.gov

DSMC15 Short Course
Sept 2015 - Kapaa, Hawaii



SPARTA is designed to be extensible

Enabled by object orientation and SPARTA styles

See doc/Section modify.html for overview

But before you start writing code,
you can send us (Steve, Michael) an email and ask ...

1 can SPARTA already do this?
2 how hard would it be to implement?
3 is my plan a good way to implement this?

We can give you some feedback on your idea

2 / 1



5 ways to modify SPARTA: easy to hard

1 Input script options

syntax is a simple programming language
if (then else), jump, next, label, include, print
use of variables
shell command to invoke other programs

2 Write a Python script that invokes SPARTA

instantiate one or more SPARTA instances
invoke SPARTA input script commands
invoke functions in SPARTA library interface (extensible)
grab SPARTA data, alter it, pass it back
see python directory of distro for examples

3 Couple to another code

4 Small changes to existing customizable files

5 Write code for a new style

3 / 1



#3 Couple to another code

Other code calls SPARTA

Section howto 4.6: Library interface to SPARTA
C-style, so can be called from C++/C/Fortran/Python
easy to extend, just add functions to library.cpp/h
add wrapper method to python/sparta.py for Python
umbrella Python script can invoke
SPARTA and other code, pass info between them

SPARTA calls other code (e.g. ParaView Catalyst)

Section howto 4.7: Coupling SPARTA to other codes
wrap the other code in a compute or fix (stay tuned)
pass appropriate SPARTA data (e.g. grid data)
other code returns new data (e.g. to alter BC)
when build SPARTA, link with the other code

4 / 1



#3 Couple to another code

Other code calls SPARTA

Section howto 4.6: Library interface to SPARTA
C-style, so can be called from C++/C/Fortran/Python
easy to extend, just add functions to library.cpp/h
add wrapper method to python/sparta.py for Python
umbrella Python script can invoke
SPARTA and other code, pass info between them

SPARTA calls other code (e.g. ParaView Catalyst)

Section howto 4.7: Coupling SPARTA to other codes
wrap the other code in a compute or fix (stay tuned)
pass appropriate SPARTA data (e.g. grid data)
other code returns new data (e.g. to alter BC)
when build SPARTA, link with the other code

4 / 1



#4 Make small changes to existing files

Look for customize comments in appropriate src file

1 Add a keyword to stats style or dump particle/grid/surf

see src/stats.cpp or src/dump *.cpp
complicated calculation better done as new Compute

2 Add a new function to variable formulas

see src/variable.cpp
math functions, special functions, math operators, etc
follow syntax rules for args of similar functions

5 / 1



#4 Make small changes to existing files

Look for customize comments in appropriate src file

1 Add a keyword to stats style or dump particle/grid/surf

see src/stats.cpp or src/dump *.cpp
complicated calculation better done as new Compute

2 Add a new function to variable formulas

see src/variable.cpp
math functions, special functions, math operators, etc
follow syntax rules for args of similar functions

5 / 1



#5 Write code for a new style

A style is a child class derived from a parent class

∼50% of SPARTA code base is add-on styles

9 kinds of styles (ls src/style*.h; cat style compute.h)

collision model = collide style
gas reaction model = react style
surface collision model = surf collide style
surface reaction model = surf react style
diagnostics = compute style
operate within timestep = fix style
geometric region = region style
output = dump style
input command = command style

create box, balance grid, run, ...

6 / 1



#5 Write code for a new style

A style is a child class derived from a parent class

∼50% of SPARTA code base is add-on styles

9 kinds of styles (ls src/style*.h; cat style compute.h)

collision model = collide style
gas reaction model = react style
surface collision model = surf collide style
surface reaction model = surf react style
diagnostics = compute style
operate within timestep = fix style
geometric region = region style
output = dump style
input command = command style

create box, balance grid, run, ...

6 / 1



Steps to write a new style

Manual Chapter 8: Modifying & Extending SPARTA
Examine the parent *.h file which defines style interface

class variables the child class sets and/or uses
methods a child class must define (pure virtual)
optional methods a child class can define (virtual)

Find an existing *.cpp/h child file similar to what you want
write a new child similar to that one
or derive from it if only need limited changes

Create fix foo.cpp/h, drop in src dir, re-build

Can now use fix ID foo ... in input script

#ifdef FIX CLASS
FixStyle(balance,FixBalance)
#else
class FixBalance : public Fix ...
#endif

7 / 1



Adding a new surface collision model

Two current models: specular and diffuse

surf collide specular.cpp/h

Parent class interface: surf collide.h

virtual void init() = 0;
virtual Particle::OnePart *

collide(Particle::OnePart *&, double *, int) = 0;
virtual void dynamic()

Must provide two pure virtual methods, third is optional

8 / 1



Specular surface collision model

Input script: surf collide upper specular
See surf collide specular.cpp/h, 81 lines (half comments)

constructor - invoked when input script command is read

if (narg != 2)
error->all(FLERR,”Illegal surf collide specular command”);

collide() - invoked when particle hits a surface element

22 lines of code (w/out comments)
3 inputs: particle, surface norm, index of reaction model

collide(OnePart *&ip, double *norm, int isr)
if (isr >= 0) do reaction (may create new jp)
if (ip) MathExtra::reflect3(ip->v,norm);
if (jp) MathExtra::reflect3(jp->v,norm);
// call ambipolar fix (if exists) so can bookkeep
return jp;

9 / 1



Diffuse surface collision model

Input script: surf collide heatwall diffuse 300.0 0.8
See surf collide diffuse.cpp/h, 281 lines

constructor

args for temperature & accommodation coeff
temperature can be time-dependent variable
optional args for translation/rotation of surf element

collide() - invoked when particle hits a surface element

Bird formula for velocity after diffuse reflection
split velocity into normal/tangential components
randomize new tangential component
account for surface translation/rotation
allow for possible surface reaction

dynamic() - if variable Temp, update once per timestep

10 / 1



Adding a new compute

Recall that computes calculate some property of system
Always for the current timestep

If you want to calculate a ...

Global result:
write a compute scalar(), compute vector(),

and/or compute array() methods
store result in scalar, vector[i], array[i][j] (vars in compute.h)
example: compute temp.cpp

loop over particles
MPI Allreduce of KE ⇒ scalar temperature

Per particle result:
write a compute per particle() method
store result in vector particle[i], array particle[i][j]
example: compute ke particle.cpp

loop over particles
ke[i] = 0.5*mass * (v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);

11 / 1



Adding a new compute

Recall that computes calculate some property of system
Always for the current timestep

If you want to calculate a ...

Global result:
write a compute scalar(), compute vector(),

and/or compute array() methods
store result in scalar, vector[i], array[i][j] (vars in compute.h)
example: compute temp.cpp

loop over particles
MPI Allreduce of KE ⇒ scalar temperature

Per particle result:
write a compute per particle() method
store result in vector particle[i], array particle[i][j]
example: compute ke particle.cpp

loop over particles
ke[i] = 0.5*mass * (v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);

11 / 1



Adding a new compute for grid or surface properties

Per grid cell result:
write a compute per grid() method
store result in vector grid[i], array grid[i][j]
example: compute grid.cpp

loop over particles
u[i] += mass*v[0];
norm mass[igroup][icell] += mass;
used to calculate U =

P
i (miVxi )/

P
i (mi )

Per surface element result:
write a surf tally() method

called when particle hits surface element
args = element, before/after particle properties

store result in vector surf[i], array surf[i][j]
example: compute surf.cpp

use mass, Vpre, Vpost to accumulate pressure P
∆p = mass ∗ (Vpost − Vpre)
P + = (∆p • n̂)/(Area ∆t/Fnum)

12 / 1



Adding a new fix

Fixes can insert operations into the timestep loop

Via start of step() and end of step() methods

Provide setmask() method:
mask |= START OF STEP;

Loop over timesteps:

fix start-of-step emit/face, emit/face/file, emit/surf, ...

move particles
communicate particles
collisions and reactions

fix end-of-step ave/time, balance, adapt, move/surf, ...

output to screen and files

13 / 1



Adding a new fix

Fixes can insert operations into the timestep loop

Via start of step() and end of step() methods

Provide setmask() method:
mask |= START OF STEP;

Loop over timesteps:
fix start-of-step emit/face, emit/face/file, emit/surf, ...
move particles
communicate particles
collisions and reactions
fix end-of-step ave/time, balance, adapt, move/surf, ...
output to screen and files

13 / 1



Other operations fixes can perform

See fix.h for details

Invoke & access output from computes or variables

fix ave/time, fix ave/grid, fix ave/surf

Create output, similar to computes

fix ave/time, fix ave/grid, fix ave/surf
global, per-particle, per-grid-cell, per-surf vectors/arrays

Define new per-particle attributes

example: fix ambipolar
ionambi = integer flag for ion or not
velambi[3] = velocity of electron associated with ion

14 / 1



Contribute your new code to the SPARTA distro

Why release it as part of SPARTA?

open source philosophy
fame and fortune, name on author page and in source code
acquire users of your feature

find and fix bugs
extend its functionality
become collaborators

Key points for a speedy release:

doc pages for new commands, in SPARTA format (doc/*.txt)
avoid changes (if possible) to core SPARTA files
ask ahead if you think changes are necessary

Then just email us the files

15 / 1


